Node

Boolean Node

Main class for Boolean node objects.

class cana.boolean_node.BooleanNode(id=0, name='x', k=1, inputs=[1], state=False, outputs=[0, 1], constant=False, network=None, verbose=False, *args, **kwargs)[source]
bias()[source]

The node bias. The sum of the boolean output transitions divided by the number of entries (\(2^k\)) in the LUT.

\[bias(x) = \frac{ \sum_{f_{\alpha}\in F} s_{\alpha} }{ |F| }\]
Returns

(float)

See also

network_bias()

c_sensitivity(c, mode='default', max_k=0)[source]

Node c-sensitivity. c-sensitivity is defined as: the mean probability that changing exactly c variables in input variables would change output value. There is another mode “forceK”, which will be used to calculate Derrida value. In that mode, it would assume the number of input variables is specified as max_k this methods is equivalent to Derrida value in [KKL17], only move a normalization coefficient from expression of Derrida value to c-sensitivity to simplify it

Parameters
  • c (int) – the c in the definition of c-senstivity above

  • mode (string) – either “default” or “forceK”

  • max_k (int) – you must specify max_k when you set mode as ‘forceK’

Returns

(float)

See also

derrida_curve()

canalizing_map(output=None)[source]

Computes the node Canalizing Map (CM).

Parameters

output (int) – The output CM to return. Default is None, retuning both [0,1].

Returns

a directed graph representation of the CM.

Return type

CM (networkx.DiGraph)

See also

boolean_network.dynamics_canalization_map() for the DCM and drawing.draw_canalizing_map_graphviz() for plotting.

constant_step(input_state)[source]

Treat the node as a constant

dynamic_step(input_state)[source]

Returns the output of the node based on a specific input

Parameters

input (list) – an input to the node.

Returns

the output value.

Return type

output (bool)

edge_effectiveness(bound='mean')[source]

The Edge Effectiveness is the mean number of an input’s states needed to determine the transition of the node.

\[e_i(x_i) = 1 - r_i(x_i)\]
Parameters

bound (string) – The bound for the \(k_r\) Input Redundancy

Returns

The list of \(e_r\) values.

Return type

(list)

edge_redundancy(bound='mean')[source]

The Edge Redundancy \(r_{i}\) is the mean number of unnecessary inputs (or #) in the Prime Implicants Look Up Table (LUT) for that input. Since there may be more than one redescription schema for each input entry, the input redundancy is bounded by an upper and lower limit.

\[r_i(x_i) = \frac{ \sum_{f_{\alpha} \in F} \Phi_{\theta:f_{\alpha} \in \Theta_{\theta}} (X^{\#}_{\theta_i} ) }{ |F| }\]

where \(\Phi\) is a function (\(min\) or \(max\)) and \(F\) is the node LUT.

Parameters

bound (string) – The bound to which compute input redundancy. Mode “input” accepts: [“lower”, “mean”, “ave”, upper”, “tuple”]. Defaults to “mean”.

Returns

The list of \(r_i\) for inputs.

Return type

(list)

Note

The complete mathematical description can be found in :cite:Gates:2020`.

edge_symmetry(bound='upper')[source]

Edge Symmetry is a measure of permutation redundancy of a single input. Similar to the computation of Edge Effectiveness but using the Two-Symbol instead of the Prime Implicant schemata.

\[s_i = \frac{ \sum_{f_{\alpha} \in F} \Phi_{\theta:f_{\alpha} \in \Theta_{\theta}} (n^{\circ}_i)}{ |F| }\]

where \(\Phi\) is the function \(min\) or \(max\) and \(F\) is the node LUT.

Parameters

bound (string) – The bound to which compute input symmetry. Mode “node” accepts: [“lower”, “upper”]. Mode “input” accepts: [“lower”, “mean”, “upper”, “tuple”]. Defaults to “upper”.

Returns

The \(k_s\) or a list of \(r_i\).

Return type

(float/list)

effective_connectivity(operator=<function mean>, norm=True)[source]

The Effective Connectiviy is the mean number of input nodes needed to determine the transition of the node.

\[k_e(x) = k(x) - k_r(x)\]
Parameters
  • operator (function) – The operator to use while computing input redundancy for the node. Defaults to statistics.mean, but min or max can be also considered.

  • norm (bool) –

    Normalized between [0,1]. Use this value when comparing nodes with different input sizes. (Defaults to “True”.)

    \(k^{*}_e(x) = \frac{ k_e(x) }{ k(x) }\).

Returns

The \(k_e\) value.

Return type

(float)

classmethod from_output_list(outputs=[], *args, **kwargs)[source]

Instanciate a Boolean Node from a output transition list.

Parameters

outputs (list) – The transition outputs of the node.

Returns

the instanciated object.

Return type

(BooleanNode)

Example

>>> BooleanNode.from_output_list(outputs=[0,0,0,1], name="AND")
input_mask(binstate)[source]

Returns the mask applied to the binary state binstate

Parameters

binstate (str) – the binary state

Returns

the masked state

Return type

output (str)

input_redundancy(operator=<function mean>, norm=True)[source]

The Input Redundancy \(k_{r}\) is the mean number of unnecessary inputs (or #) in the Prime Implicants Look Up Table (LUT). Since there may be more than one redescription schema for each input entry, the input redundancy is bounded by an upper and lower limit.

\[k_{r}(x) = \frac{ \sum_{f_{\alpha} \in F} \Phi_{\theta:f_{\alpha} \in \Theta_{\theta}} (n^{\#}_{\theta} ) }{ |F| }\]

where \(\Phi\) is a function (\(min\) or \(max\)) and \(F\) is the node LUT.

Parameters
  • operator (function) – The operator to use while computing input redundancy for the node. Defaults to statistics.mean, but min or max can be also considered.

  • norm (bool) –

    Normalized between [0,1]. Use this value when comparing nodes with different input sizes. (Defaults to “True”.)

    \(k^{*}_r(x) = \frac{ k_r(x) }{ k(x) }\).

Returns

The \(k_r\) value.

Return type

(float)

Note

The complete mathematical description can be found in [MPR13].

input_symmetry(bound='upper', norm=True)[source]

The Input Symmetry is a measure of permutation redundancy. Similar to the computation of Input Redundancy but using the Two-Symbol instead of the Prime Implicant schemata.

\[k_s = \frac{ \sum_{f_{\alpha} \in F} \Phi_{\theta:f_{\alpha} \in \Theta_{\theta}} (n^{\circ}) }{ |F| }\]

where \(\Phi\) is the function \(min\) or \(max\) and \(F\) is the node LUT.

Parameters
  • bound (string) – The bound to which compute input symmetry. Mode “node” accepts: [“lower”, “upper”]. Mode “input” accepts: [“lower”, “mean”, “upper”, “tuple”]. Defaults to “upper”.

  • norm (bool) –

    Normalized between [0,1]. Use this value when comparing nodes with different input sizes. (Defaults to “True”.)

    \(k^{*}_s(x) = \frac{ k_s(x) }{ k(x) }\).

Returns

The \(k_s\) or a list of \(r_i\).

Return type

(float/list)

look_up_table()[source]

Returns the Look Up Table (LUT)

Returns

the LUT

Return type

(pandas.DataFrame)

Examples

>>> AND = BooleanNode.from_output_list([0,0,0,1])
>>> AND.look_up_table()
pi_coverage()[source]

Returns the \(F'\) (Prime Implicants) binary state coverage.

Returns

(list)

See also

ts_coverage()

schemata_look_up_table(type='pi', pi_symbol='#', ts_symbol_unicode='̊', ts_symbol_latex='\\circ', format='pandas')[source]

Returns the simplified schemata Look Up Table (LUT)

Parameters
  • type (string) – The type of schemata to return, either Prime Implicants pi or Two-Symbol ts. Defaults to ‘pi’.

  • pi_symbol (unicode) – The Prime Implicant don’t care symbol. Default is #.

  • ts_symbol_unicode (unicode) – A unicode string for the Two Symbol permutable symbol. Default is u"̊".

  • ts_symbol_latex (unicode) – The latex string for Two Symbol permutable symbol. Default is \circ.

  • format (string) – The format to return. Possible values are pandas (default) and latex.

Returns

the schemata LUT

Return type

(pandas.DataFrame or Latex)

Examples

>>> AND = BooleanNode.from_output_list([0,0,0,1])
>>> AND.schemata_look_up_table(type='pi')

Note

See the full list of combining characters to use other symbols as the permutation symbol.

See also

look_up_table()

ts_coverage()[source]

Returns the \(F''\) (Two-Symbol schematas) binary state coverage.

Returns

(list)

See also

pi_coverage()