# -*- coding: utf-8 -*-
"""
Random Boolean Network
======================
Methods to generate random ensembles of Boolean networks.
"""
#   Copyright (C) 2021 by
#   Alex Gates <ajgates@indiana.edu>
#   Rion Brattig Correia <rionbr@gmail.com>
#   Thomas Parmer <tjparmer@indiana.edu>
#   All rights reserved.
#   MIT license.
from collections import defaultdict, Counter
import networkx as nx
import random
from cana.boolean_network import BooleanNetwork
import re
from io import StringIO
from cana.utils import output_transitions
[docs]def regular_boolean_network(N=10, K=2, bias=0.5, bias_constraint='soft', keep_constants=True, remove_multiedges=True, niter_remove=1000):
    """
    TODO: description
    """
    din = [K] * N  # in-degree distrubtion
    dout = [K] * N  # out-degree distrubtion
    regular_graph = nx.directed_configuration_model(din, dout)
    # the configuration graph creates a multigraph with self loops
    # the self loops are OK, but we should only have one copy of each edge
    if remove_multiedges:
        regular_graph = _remove_duplicate_edges(graph=regular_graph, niter_remove=niter_remove)
    # A dict that contains the network logic {<id>:{'name':<string>,'in':<list-input-node-id>,'out':<list-output-transitions>},..}
    bn_dict = {
        node: {
            'name': str(node),
            'in': sorted([n for n in regular_graph.predecessors(node)]),
            'out': random_automata_table(regular_graph.in_degree(node), bias, bias_constraint)
        } for node in range(N)
    }
    return BooleanNetwork.from_dict(bn_dict) 
[docs]def er_boolean_network(N=10, p=0.2, bias=0.5, bias_constraint='soft', remove_multiedges=True, niter_remove=1000):
    """
    TODO: description
    """
    er_graph = nx.erdos_renyi_graph(N, p, directed=True)
    # the configuration graph creates a multigraph with self loops
    # the self loops are OK, but we should only have one copy of each edge
    if remove_multiedges:
        er_graph = _remove_duplicate_edges(graph=er_graph, niter_remove=niter_remove)
    # A dict that contains the network logic {<id>:{'name':<string>,'in':<list-input-node-id>,'out':<list-output-transitions>},..}
    bn_dict = {
        node: {
            'name': str(node),
            'in': sorted([n for n in er_graph.predecessors(node)]),
            'out': random_automata_table(er_graph.in_degree(node), bias, bias_constraint)
        } for node in range(N)
    }
    return BooleanNetwork.from_dict(bn_dict) 
[docs]def random_automata_table(indegree, bias, bias_constraint='soft'):
    """
    TODO: description
    """
    if bias_constraint == 'soft':
        return [int(random.random() < bias) for b in range(2**indegree)]
    elif bias_constraint == 'hard':
        n_ones = int(bias * (2**indegree))
        output = [0] * (2**indegree - n_ones) + [1] * n_ones
        random.shuffle(output)
        return output
    elif bias_constraint == 'soft_no_constant':
        output = [int(random.random() < bias) for b in range(2**indegree)]
        if sum(output) == 0:
            output[0] = 1
            random.shuffle(output)
        return output 
def _remove_duplicate_edges(graph, niter_remove=100):
    """
    TODO: description
    """
    edge_list = list(graph.edges())
    edge_frequency = Counter(edge_list)
    duplicate_edges = [edge for edge, num_edge in edge_frequency.items() if num_edge > 1]
    iremove_iter = 0
    while len(duplicate_edges) > 0 and iremove_iter < niter_remove:
        for dedge in duplicate_edges:
            if edge_frequency[dedge] > 1:
                switch_edge = random.choice(edge_list)
                # exchange edges
                graph.remove_edge(dedge[0], dedge[1])
                graph.remove_edge(switch_edge[0], switch_edge[1])
                graph.add_edge(dedge[0], switch_edge[1])
                graph.add_edge(switch_edge[0], dedge[1])
                edge_frequency[dedge] -= 1
                edge_frequency[switch_edge] -= 1
                edge_frequency[(dedge[0], switch_edge[1])] += 1
                edge_frequency[(switch_edge[0], dedge[1])] += 1
                edge_list = list(graph.edges())
        duplicate_edges = [edge for edge, num_edge in edge_frequency.items() if num_edge > 1]
        iremove_iter += 1
    if iremove_iter >= niter_remove:
        print("Warning: multi-edges were not successfully removed after %s iterations!!" % str(iremove_iter))
    return graph
[docs]def from_string_boolean(self, string, keep_constants=True, **kwargs):
    """
    Instanciates a Boolean Network from a Boolean update rules format.
    Args:
        string (string) : A boolean update rules format representation of a Boolean Network.
    Returns:
        (BooleanNetwork) : The boolean network object.
    Examples:
        String should be structured as follow:
        .. code-block:: text
            # BOOLEAN RULES (this is a comment)
            # node_name*=node_input_1 [logic operator] node_input_2 ...
            NODE3*=NODE1 AND NODE2 ...
    See also:
        :func:`from_string` :func:`from_dict`
    """
    logic = defaultdict(dict)
    # parse lines to receive node names
    network_file = StringIO(string)
    line = network_file.readline()
    i = 0
    while line != "":
        if line[0] == '#':
            line = network_file.readline()
            continue
        logic[i] = {
            'name': line.split("*")[0].strip(),
            'in': [],
            'out': []
        }
        line = network_file.readline()
        i += 1
    # Parse lines again to determine inputs and output sequence
    network_file = StringIO(string)
    line = network_file.readline()
    i = 0
    while line != "":
        if line[0] == '#':
            line = network_file.readline()
            continue
        eval_line = line.split("=")[1]  # logical condition to evaluate
        # RE checks for non-alphanumeric character before/after node name (node names are included in other node names)
        # Additional characters added to eval_line to avoid start/end of string complications
        input_names = [logic[node]['name'] for node in logic if re.compile('\W' + logic[node]['name'] + '\W').search('*' + eval_line + '*')]
        input_nums = [node for input in input_names for node in logic if input == logic[node]['name']]
        logic[i]['in'] = input_nums
        # Determine output transitions
        logic[i]['out'] = output_transitions(eval_line, input_names)
        line = network_file.readline()
        i += 1
    return self.from_dict(logic, keep_constants=keep_constants, **kwargs)